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I. INTRODUCTION 

A recurring theme in geographical data analysis is how to isolate and
describe properties of spatial distributions. In this context a spatial
distribution is taken to be the different values of a variable over a set of
regions. For instance, industrial geographers are often presented with the
problem of describing regional variations in the distribution of employment
in an industry, a problem which requires techniques capable of measuring
whether the industry's workforce is excessively concentrated in a few local-
ities or relatively evenly distributed throughout the country. Similarly,
social geographers interested in residential segregation (Peach, 1975) need
ways of describing the distribution of social and ethnic groups over the
census tracts of a city. Traditionally such problems have been tackled using
techniques known as Lorenz curves and segregation indices (Duncan and Duncan,
1955) to make the necessary descriptions. However, experience has shown
that these methods produce results which are critically dependent on the
size, shape and number of regions used in the analysis. This dependence
makes it difficult to compare properties of variables distributed over differ-
ent regional systems. In an effort to overcome at least some of the tech-
nical difficulties posed by the more traditional methods, a number of geo-
graphers have examined the potential of information statistics as an altern-
ative method of analysing properties of spatial distributions. It is these
methods and their simpler geographical applications that are the subject of
this monograph.

The mathematics of information theory is closely linked with probabil-
ity theory and this monograph has been written on the assumption that the
reader is familiar with the basic terminology of probability theory such as
measuring the probability of an event's occurrence on a scale between 0 and
1. Otherwise, the only background mathematics necessary to understand in-
formation theory is a knowledge of how to manipulate logarithms. Indeed, in
Section II(ii), the reader will find a description of those uses of logarithms
which are peculiar to information theory.

Information statistics originated as part of the development of in-
formation theory which is the scientific study of properties of communicat-
ions systems such as speech, telephony, radio and television. The beginn-
ings of this theory can be traced back to a paper by Hartley (1928) on the
transmission of information; however, the major stimulus to its development
and application was due to the results obtained by the mathematician Claude
Shannon (1948). These results were concerned with the processing and trans-
mission of messages from one place to another. The theory provides engineers
with a set of rules which set limits upon the capability of a communication
system to transmit given quantities of information. It enables measurement
of such quantities as the amount of information a communications channel is
capable of transmitting, or the number of different messages that can be
formed from a set of coding symbols. In this sense the theory is concerned
with quantities of information, but not with the meaning or value human
beings might attach to certain messages and thoughts. Thus the theory is
incapable of distinguishing between a trivial piece of gossip and, say, a
diplomatic message declaring the outbreak of war. The problem of value is
left entirely to the recipient of the message.
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(1)

In a sense, it is just because this special usage of information re-
lates to what could be said rather than what is said that the theory has
found general applications outside the field of communications engineering.
The term 'what could be said implies that the process of forming messages
involves a certain degree of choice. Therefore, it is not surprising to find
that the theoretical definition of information is closely bound up with more
familiar notions involving chance and probability. It is these links with
probability that give information theory its generality as a statistical
method of data analysis. Indeed, any set of events whose individual occurr-
ences can be expressed in terms of probabilities falls within the ambit of
information theory. In the social sciences the potential of information
theory as a method of data analysis was first recognized by psychologists
such as Quastler (1955). Geographical interest in the theory was fostered
by the work of the economist Henri Theil (1967, 1972) who demonstrated how
information concepts could be used to analyse properties of both spatial and
temporal data. However, in order to understand such methods it is first
necessary to introduce some of the simpler mathematical ideas about probab-
ility and information.

II THE INFORMATION CONTENT OF A PROBABILITY DISTRIBUTION 

(i) Probability and surprise 

Shannon's measure for the entropy, uncertainty, or information content
evoked by a probability distribution is fundamental to the understanding of
any application of information theory. It is possible to derive the entropy
formula in a number of different ways (see Chapman, 1977) but, to avoid con-
fusion, we will concentrate on a simple axiomatic derivation based on the
relationship between probability and surprise.

Suppose we use daily rainfall records collected at a meteorological
station to obtain the following pair of probabilities: {pw . 75, pd = .25}
where pw is the probability that it will rain tomorrow and pd is the probab-
ility that it will be dry. If tomorrow turns out to be a wet day, the news
of this occurrence will not surprise you a great deal because you already
know wet days have a high probability of occurrence. Conversely if to-
morrow is a dry day, you will experience a far greater surprise because you
know dry days occur relatively infrequently. Thus the degree of surprise
evoked by the news that some event has indeed occurred is a function of that
event's prior probability of occurrence. We are highly surprised by the
occurrence of rare events with low probabilities, but only slightly bemused
by the occurrence of events whose probability is close to one (certainty).
In other words, the shock is greatest when the unexpected happens. This
notion of surprise may be equated with the technical meaning of information.
The larger the surpise, the greater the information content or value of the
piece of news we have received.

To proceed further it is necessary to give a precise mathematical
definition to our intuitive notions about the relationship between surprise

between 0 (impossibility) and 1 (certainty), surprise will be some function
of the positive probabilities that occur within these limits. We will
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specify three axioms, or rules, which our measure of surprise must satisfy,
and then deduce the mathematical function which satisfies these rules.

Our first axiom states that the surprise we experience at the occurr-

For example, suppose you are told the sum of two throws of a six-sided dice
was a number less than 13. You experience no surprise on receiving this news
because the event is bound to occur.

The second axiom defines our previous notion that rare events evoke a
greater surprise than common events. For example, if our probability dis-
tribution describes two possible outcomes, then the occurrence of the event
with the lower probability will create the greater surprise. Symbolically,
this assertion is written as:

This axiom requires us to measure surprise as a decreasing function of pro-
bability. Therefore, our function must measure the surprise evoked by a wet

The third axiom is the most crucial for our understanding of the mathe-
matical function which measures surprise. For the sake of illustration we
must first assume that the occurrences of wet and dry days are independent
of one another. That is, we are assuming that today's weather has no in-
fluence upon tomorrow's, or any other day's weather. When events are assumed
to be independent, the probability that a specified sequence of these events
occurs is obtained by multiplying together the probabilities for all the
individual events which form the sequence. For instance, the prior probab-

Now suppose a wet day is indeed followed by a dry day. Clearly our surprise
at this joint occurrence must be related to this joint probability and would

day followed. This statement implies that the mathematical function chosen
to measure surprise must satisfy the condition

Notice that this axiom requires us to choose some function which relates the
multiplication of individual probabilities on the left-hand side of the ex-
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(2)

may also be written in the form

It is the logarithm of the individual probabilities that is the function
which satisfies this condition because the logarithm of the product of two
numbers is equal to the sum of the logarithm of each number. Therefore, if

Although the definition of surprise as the logarithm of probability satis-
fies our third axiom, it does not satisfy the second axiom which asserted
that surprise must be a decreasing function of probability. This failure
occurs because the logarithm of a probability increases with the value of the
probability. To make surprise a decreasing function of probability we simply
define it as the reciprocal of probability, that is

In the monograph, for ease of comparison with standard logarithmic
tables, all results are expressed to the base 10. However, in many texts on
information theory logarithms to the base 2 are used in computation. The
logarithm to the base 2 of any number may be calculated by multiplying its
base 10 logarithm by the constant scaling factor

The choice of the base 2 to express results is made because the surprise, or
information content, associated with the outcome of an event with prior pro-
bability p = .5 is measured as

This revised definition also satisfies the first axiom because a certain

finition now satisfies all of our axioms and for the weather problem the in-
dividual surprises associated with the occurrence of a wet and a dry day are
respectively

and

(ii) Some properties of logarithms 

At this juncture it is worth mentioning a few simple properties of
logarithms which are employed in information theory. The first point concerns
the writing of logarithms for numbers less than one in a negative form. For

This quantity is said to represent one unit or bit of information. Sometimes
information theorists present their results in logarithms to the base e
2.7183, and in such circumstances the unit of information is termed the nit
and occurs for an event where the prior probability of occurrence is p =
1/2.7183 0.3678. Finally, if logarithms to the base 10 are used the unit
Of information is termed the decit and corresponds to an event where p = 1/10

= .10.

(iii) Shannon's Entropy 

Whereas surprise is a function of a single probability, Shannon's
Entropy is a measure of a discrete probability distribution. Entropy is
simply the average surprise a probability distribution will evoke. For set

which is the more convenient computationally, is obtained simply by subtract-
ing the characteristic from the mantissa, that is

In a similar vein it may be noted that our measure of surprise

(2)

Alternatively, if -log(pi) is used as the definition of surprise, Shannon's
Entropy may be written in the form

(4)

For our weather problem, which is a discrete probability distribution comp-
osed of n = 2 events, (i = 1 = wet, i = 2 = dry), the entropy is calculated

from formula (3) as

because the logarithm of one is zero. The quantity --log(p i ) will always be

6

A close examination of this calculation will illustrate the meaning of ent-
ropy as average surprise. If we observe the weather for some long period of
time we know that a proportion of .

75 of the days will be wet and a proport-
ion of .25 days will be dry. -Therefore, we will receive a surprise of 0.1249

on . 75 of all days and be surprised by an amount 0.6021 on .25 of all days.
Thus, after a large number of days have passed, our average daily surprise
will be the sum of the products of the individual surprises and their

7
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respective probabilities. On the average, the daily weather will surprise
by an amount of 0.2442 and this quantity, the entropy is often termed the
amount of uncertainty a set of probabilities are capable of evoking. Another

value of a single message confirming the occurrence of one of the defined
set of events.

(iv) Maximum entropy 

Many practical applications of the entropy idea involve finding the
values of a set of n probabilities which make the entropy function take on
its maximum value. In other words we often need to know the conditions
which create the greatest uncertainty.

For the sake of simplicity we will explain the idea of maximum entropy
with reference to the two-event weather problem. For a two event problem
the maximum entropy can be found graphically by plotting the value of the

Figure 1. The entropy of all weather forecasts.

(5)

(6)
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when the probabilities for wet and dry days are the same. This result makes
sense because, if wet and dry days are equiprobable, we are maximally un-
certain about the next day's weather.

We can generalise this result to obtain a simple formula for calculat-
ing the maximum entropy for any set of n discrete events. Maximum entropy
occurs when the probabilities for all n events are equal, that is when all
probabilities have the value

III ENTROPY AS A MEASURE OF DIVIDEDNESS 

(i) Relative entropy and spatial dispersion 

So far we have interpreted entropy purely within the context of inform-
ation theory. Theil (1972), however, gives a much broader interpretation of
the entropy idea which extends beyond the narrow realm of messages and even
that of probability. He regards entropy as a general measure of dividedness,
capable of representing the extent to which some total population is evenly
distributed among its component parts. It is this interpretation that has
been applied to a variety of problems in both geography and the social
sciences in general. To take a simple example, suppose we want to measure
the extent to which a school is racially integrated. If the schoolchildren
are divided into two racial groups, black and white, we can measure the pro-
portion of schoolchildren belonging to each group. The entropy of these pro-
portions provides an appropriate measure of racial integration. Its value
will be zero when only one racial group is represented in a school and will
rise to a maximum of log (n = 2) when both groups are equally represented.
This type of argument can be applied to any population which can be meaning-
fully divided amongst a set of parts. In geography, the method is often
applied to the dividedness of a population over set of regions, and to ill-
ustrate the approach we will examine an analysis of the distribution of the
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Figure 2. U.S.A., major census divisions and aggregated zones used in
Semple's decomposition analysis.

which is the ratio between the observed entropy of the proportions and their
maximum possible entropy. For the life insurance assets proportion formula
(7) gives the relative entropy as

(8)

assets of financial corporations in the United States made by Semple (1973).

The simplest application of the entropy idea is to measure either the
amount of spatial dispersion or spatial concentration exhibited by a geo-

iables was the value of the assets of life insurance companies whose head-
quarters were located in each of the n 9 major census divisions (see fig.
2) of the United States for 1956. Before analysis can begin these observ-

The data are listed in Table 1.

Table 1 The proportions of life insurance company assets in U.S. census
divisions, 1956. Source: R.K. Semple (1973)

*Assets expressed in billions of dollars

Inspection of these proportions will reveal that life insurance company assets
tend to be concentrated in the Northern ( i = 1) and Eastern ( i = 2) census
divisions. To measure their degree of dividedness we first calculate their
observed entropy from formula (3), that is

This quantity lies on a scale which ranges from zero to log n. The minimum
value of zero will occur when the variable is present in only one of the
regions and therefore one of the proportions will be equal to one and the
remainder will all be equal to zero. This limit is equated with maximum
spatial concentration of the variable. The maximum dispersion of a set of
proportions occurs when each region contains the same amount of the variable,

on a scale between o and 1 by calculating the relative entropy of the pro-
portions using the formula

1 0 1 1



which indicates that life insurance assets achieve a degree of dispersion
approximately 56% of the maximum possible. Depending on the idea we wish to
test, it is sometimes preferable to express our results on a scale where
maximum spatial concentration coincides with the upper limit of one. To
achieve this transformation we compute an index known in information theory
as the redundancy which is simply the complement of the relative entropy,
that is

Thus for our assets problem the degree of spatial concentration is measured
as

Spatial dispersion indices are descriptive measures used to compare
differences in dispersion between different sets of proportions. Semple used
information statistics to test the idea that the distribution of a nation's
wealth would become more evenly shared among the nation's regions as the
national economy grows and matures. This suggestion would lead us to expect
the distribution of the assets of financial companies to become more dispers-
ed during the studied period. Table 2 lists the value of the relative entropy
of the proportions for three classes of financial company (life insurance,
banking and utilities) for the years 1956 and 1971. It can be seen that for
each of the three classes the relative entropy of the asset proportions showed
a small increase during the study period indicating a slight tendency towards
increased spatial dispersion. These results give some credance to Semple's
ideas, although the changes in the relative entropies are small and are in-
dicative only of minor modifications to the spatial distribution of assets.

Table 2: Dispersion analysis of U.S. financial corporations, 1956-71.
Adapted from R.K. Semple (1973) p. 317 

Class Year n Observed
Entropy

Maximum
Entropy

Relative
Entropy

Life 1956 9 .5341 .9541 .5598

Insurance 1971 9 .5515 .9541 .5780

Banking 1956 9 .5741 .9541 .6017

1971 9 .5998 .9541 .6287

Utilities 1956 9 .5467 .9541 .8730

1971 9 .5707 .9541 .5982
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(ii) The entropy decomposition theorem 

An advantage of relative entropy over the traditional indices of spatial
dispersion is that its value is invariant with the value of n, the number
of regions. By invariant we mean that an observed relative entropy of say
.5c) is indicative of the same degree of dispersion irrespective of whether
the observed proportions were derived from a system of n = 10 or n = 100
regions. In this sense relative entropy is said to be a dimensionless index
and this property enables the index to be used to compare degrees of dispers-
ion on different sized regional systems. However, it must be emphasized
that this property does not mean that relative entropy is insensitive to the
particular shapes and sizes of the regions used as a basis for collecting
the observed proportions. For example, if the relative entropy of life in-
surance assets had been calculated from proportions derived from individual
states instead of major census regions we would no doubt obtain a different
result. The difference between these two relative entropies would be due
solely to differences between the way in which the two regional systems part-
ition the distribution of life insurance assets. This effect is a manifest-
ation of the scale problem which has an unspecified influence on many forms
of spatial analysis. Fortunately, a theoretical result known as the entropy
decomposition theorem allows us to measure directly the way in which differ-
ences in degrees of diversification are attributable to different regional
data collection systems. The use of information statistics to measure such
scale and aggregation effects is generally termed decomposition analysis.

Table 3. Notation for entropy decompositions using Semple's 1956 life
insurance proportions

As a preliminary to decomposition analysis, regional systems must be delimited
for the different scales of analysis. Figure 2 illustrates the two scales
of analysis used by Semple to analyse the dispersions of financial company
assets. The i = 1,2,..../, 9(n = 9) U.S. census divisions have each been
assigned to one of i = i, 2, = 3) larger regions termed the Northern,
Southern and Western regions respectively. The census divisions are termed
the sub-regional scale and the groups of census divisions are termed the
regional scale. Notice Semple assigned equal numbers of sub-regions to each
region, and this design feature is a necessary condition of the description

13



(11)

(9)
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of decomposition analysis that follows.

The definition of a two-tier regional system requires us to introduce
aggregation notation in order to identify proportions belonging to differ-
ent scales (see Table 3). The proportion of life insurance assets located

S. Atlantic sub-region (i = 4) which is a part of the Southern region ( j =
2). To calculate the proportion of the variable found in each region (j) we
simply sum the sub-region proportions assigned to the region. Symbolically,
we write this summation as

Notice this is the same calculation we made for the observed entropy on
p. 7 and here we have simply added the subscript j to denote that each sub-
regional proportion is a member of one of the regional proportions.

The entropy decomposition theorem states that formula (10) can be re-

Decomposition analysis involves separating the observed entropy of all the
sub-regional proportions into two components which measure the contribution
of each regional scale of the observed degree of diversification. The

and is referred to as the total observed entropy. For the life insurance
assets formula (10) gives the result

The interested reader is referred to Theil (1972) for a proof of the result
which depends on the additivity of information as defined by the third axiom
of surprise (p. 5 ). This lengthy formula is composed of two expressions
on either side of the addition sign. The expression on the left-hand side

(12)

The meaning of these terms will become clear if we calculate their observed
values. The between region entropy is simply the observed entropy of the
regional proportions and, for the life insurance problem, is calculated as

This quantity reflects the degree of dividedness that is observed at the
regional scale.

The average within region entropy is calculated by expanding the term
on the right-hand side of the addition sign in formula (11) to give

(10)



Inspection of this expansion will help to clarify the meaning of the term
average entropy within regions. Inside each pair of square brackets each
region is treated as a separate data set comprised of its 3 sub-regions.
The division of each sub-regional proportion by its regional proportion
(pj(i)/p.), converts the sub-regional proportions into a distinct set of
proportions which sum to one. For example, the Northern region (J=1) is
treated as a separate data set with life insurance proportions

and the reader can easily check these converted values sum to one. The
calculations inside the square brackets give the entropy of the converted
proportions within each of the regions. Thus the within region entropy of
. 03669 obtained for the Northern Region 0=1) is indicative of the degree of
dividedness of the three life insurance proportions forming that region.
Taken together, the three within region entropies (.3669, .4744, 3641) may
be used to compare degrees of dividedness in each region. The average
within region entropy of . 3717 is then obtained as the sum of each within

in the Southern region where the within region entropy is . 4744, this region
only contributes .1)218 to the average within region entropy because the
proportion of all life insurance assets controlled from the South is low
(P2=.046). Thus our final value of . 3717 reflects the average dividedness
of the proportions within the regions.

To check our arithmetic we can substitute our results in formula (12)
to get

(12)

which shows that the decomposition theorem has been satisfied.
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To obtain indices of dispersion for the various scales the condition
under which the various entropies take on maximum values must be established.
In fact the expressions in the decomposition (12) all take on a maximum
value when all the proportions in each sub-region are equal, that is when
all

(13)

scale occurs simultaneously with maximum dispersion at the regional scale,
when, by definition, all

(14)

From formulas (13) and (14) it is apparent that maximum dispersion of all

and therefore

Conversely, the opposite extreme of maximum spatial concentration occurs
when one of the sub-regional proportions is equal to one and the remainder
are all equal to zero. In this case all the terms in the decomposition (11)
will also take on a value of zero.

These boundary conditions of the entropy decomposition allow us to con-
struct two further relative entropies which measure the degree of dispersion
observed at each regional scale on a scale from zero to one. The degree of

For the life insurance proportions formula (15) gives the result

which indicates a high degree of spatial concentration at this scale. The
average dispersion within regions exhibited by the sets of proportions,

17



(16)

For the life insurance proportions formula (16) is evaluated as

markets where these companies sell their final product. Table 5 lists

Table 5: Partition of an industry's sales by company and region

(17)

(18)

(19)

which is indicative of a tendency for life insurance assets to be dispersed
within the regions.

Table 11.4 lists the results of Semple's decomposition analyses for the
distribution of the assets of three types of financial company in 1956 and
1971. Notice that, unlike life insurance assets, both banking and utilit-
ies exhibit higher degrees of dispersion between regions than within region.
The results illustrate some quite significant distributional changes be-
tween 1956 and 1971 which were not apparent in the initial aggregated analy-

However, this result disguises two counterbalancing changes which are re-
vealed by the decomposition analysis. While the between region dispersion
of utility assets increased quite markedly from . 6344 to .7397, this
change was cancelled out by an increased concentration of assets within the
regions.

Table 4: Entropy decomposition analysis of U.S. financial corporations,
1956-71. Adapted from R.K. Semple 1973) p.317.

(iii) Further decompositions 

So far we have used the decomposition theorem to give detailed descript-
ions about the form of a spatial distribution at two regional scales. How-
ever, the theorem can easily be adapted to handle more complex partitions of
single variables. One of the interesting geographical extensions is the case
where the variable is partitioned over a set of regions and a set of categor-
ies. For instance, the value of the sales of an industry can be partition-
ed among various companies that form the industry and the regions, or

1 8

entropy of these n x m = k proportions is measured by

19



Table 6: Decomposition of the industry's sales problem.

Clearly, many other geographical problems are suited to this form of
decomposition analysis. Degrees of dispersion of social variables grouped
by class and region, or political variables such as voting behaviour classed
by party and constituency can easily be analysed within this decomposition
framework. Moreover, it is not necessary to restrict the decomposition to
one set of regions and one set of categories. Theil (1967, Ch. 8) presents

20

an analysis of the distribution of car sales in the U.S.A. decomposed into
two regional scales (major census division and state) and two industrial
categories (company and make of car). These four-way decompositions are not
described here because their explanation requires the use of rather lengthy
and cumbersome notation. However, we may note that those more complex part-
itions are based on the same principle as the two-way decompositions and
simply involve a further separation of the between and within category entro-
pies to account for the effect of the additional classes.

The reader who is familiar with inferential statistics may have noticed
the entropy decomposition analysis is similar in style to the classical analy-
sis of variance technique. A method which involves separating the total
variation in a set of sample observations distributed over a set of regions
into a component which measures variation that occurs within the regions
and a second component that measures variation that occurs between the reg-
ions. By testing the ratio of the between to within components for stat-
istical significance, analysis of variance is capable of testing hypotheses
concerning the significance of the differences between the regional means.
For example, the method can be used to establish whether differences between
mean wheat yields on various soil types are significantly different from one
another or merely due to chance variations in yield. Although entropy de-
composition analysis does not allow for formal statistical testing in the
manner of analysis of variance, it does give a descriptive evaluation of the
relative importance of the between and within region effects.

IV COMPARING TWO DISTRIBUTIONS

So far our use of information statistics has been confined to the
analysis of a single variable divided into a set of proportions, {pi}. This
restriction is imposed by Shannon's entropy which is capable of measuring
only the degree of correspondence between the observed proportions and the
idealised distribution of equal proportions. However, in many cases it is
more realistic to compare the observed distribution with a second variable,
distributed over the same set of regions. For example, to assess a country's
population distribution we might decide to compare the proportion of the
total population in each county with the proportion of the country's national
area occupied by each county. In this case an even population distribution
would occur when each county's population proportion was equal to its area
proportion. This problem, which involves two variables - population and
area, cannot be tackled using entropy statistics. Instead, the description
requires the use of an information statistic devised by Kullback (1959)
which is variously termed information gain, expected information or directed
divergence.

(i) Information gain : theoretical derivation 

The index of information gain will be derived using our previous de-
finition for the surprise at the outcome of an event given by s(p) = log (l/p),
where p is the prior probability of occurrence. Recall that the function
s(p) also measures the information contained in the message which tells us
of the event's occurrence. This information content is large when p is
small because we have received news of a rare event. Conversely, if p is
close to one the information content of the message tends to zero because

21



news about a near certain event contains little new information. Now,
suppose we are told, not that an event has occurred, but that the event's
prior probability of occurrence, 0, has changed to some new posterior
probability whose value is q. What is the information content of such a
message? Clearly the problem requires us to find a function to define a
quantity s(q:p) which we will use to measure the information content of the
message which transforms the probability p into some new value, q.

To obtain a suitable definition for S(q:p) it is necessary to proceed
under the assumption that the event ultimately does occur. The starting
point for our analysis is the prior probability p, and the end point is the
news that the event has occurred. Consider two different routes which both
begin and end in this way. Route one consists of two messages; the first
message informs us that the prior probability has changed to some new value
q. and the second message tells us the event occurred with the revised pro-
bability q. This first route may be illustrated by a weather forecaster
who changes his mind. He usually assigns the occurrence of a dry day the
probability P = .25 which is based on their past frequency, however, because
of prevailing anticyclonic conditions he decides to revise tomorrow's pro-
bability for dry weather to q = .75. His suspicions are confirmed when to-
morrow turns out to be dry. To the recipient of these messages the inform-
ation content of this route is made up of two components namely the inform-
ation content of the initial message transforming p to q denoted by s(q:p) =
S(.75: .25), plus the information content of the second message confirming
the occurrence of a dry day and denoted by S(q) = s( .75). The second route
consists of a single message stating that the event occurred with the initial
probability, p. In this instance the recipient does not hear the revised
forecast, and, therefore, the information content of the dry day's occurr-
ence is measured by s(p) = s(.25).

It should be apparent that the information content of both these routes
is the same because they end with the same piece of information, the occurr-
ence of a dry day. Symbolically, we can write route one's equality with
route two as

S(q:p) + S(q) = S(p)• (22)
Route 1 = Route 2

For the weather forecasting probabilities this assertion reads

S(.75 : .25) + S(.75) = S(.25).

In expression (22) we already know the values of the two terms s(p) and
S(q) which measure the information content of an event occurring with a
single probability. They are defined in the usual way as

S(p) = log (l/p) and S(q) = log (1/q).

This knowledge enables us to rearrange expression (22) so that the unknown
term s(q:p) is defined by the two known terms s(p) and s(1) that is

S(q:p) = S(p) - S(q)
= log (l/p) - log (1/q) (23)
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Thus the information content of the message which transformed the probability
of a dry day from p = .25 to q = .75 is measured as

A more economical definition of S(q:p) is obtained if we use the simple
relationship which states that the result of subtracting the logarithms of
two numbers is equal to the logarithm of the number obtained from the divi-
sion of the first number by the second number, that is log (a) - log (b) =
log (a/b). This relationship enables formula (23) to be written as

(24)

and allows the information content of the weather forecast transformation
to be obtained more quickly as

Notice that in this example the information content of the transformation
is a positive quantity because the likelihood of a dry day has been in-
creased from p = .25 to q = .75. Indeed for all cases were p<q the inform-
ation gained will be positive. Conversely, when p>q the information content
of the transformation will be negative because the event is less likely to
occur. Finally for the case where p = q the value of log(q/p) is zero in-
dicating that there is no information content in an unchanged situation.

(ii) Expected information gain 

We can extent this argument to obtain a measure of the expected in-
formation content of a set of messages which transform the values of a
prior probability distribution, {pi}, into a new set of values, {qi}. To
exemplify the derivation of expected or average information gain we will use
the simple two event weather forecasting problem. When the dry day probab-

To derive s(qi:pi) = - . 5182 and S(q2:p2) . 4772 it was necessary to assume

that the events they describe ultimately occurred. Consequently, we do not
know which transformation is appropriate until the day's weather is known.
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expressed as the sum of each individual information transformation weighted
by its posterior probability, that is

(25)

Thus, on the average, the information content of the weather forecast trans-
formations will be

Clearly the expected information gain defined by formula (25) need not be
restricted to the two event case, and the generalised formula for the ex-
pected information gained from a set of n messages which transform a set of

The most important property of formula (26) is that its value is always
positive despite the fact that the individual terms, qi log(qi/pi) may be

always positive is beyond the scope of this monograph, however, the interest-
ed reader is referred to Theil (1972, p.59) who proves that the sum of the
positive terms, qi log(qi/pi), will always exceed the sum of the negative
terms. The one exception to this rule is the case where each prior probab-
ility is equal to its transformed posterior probability for all n events,

where the priors remain unchanged by the transformation, represents the lower
limiting case of zero expected information gain. Unfortunately, the expected
information gain defined by formula (26) has no finite upper limit. The
absence of such a limit is due to the case where the prior probability of
some event is specified as zero and the transformation raises this estimate
to a positive probability q. When an impossible event is deemed possible by
the transformation the prior probability of zero has been increased by a

we are infinitely surprised by this message. Similarly, the expected inform-
ation gain is also infinite if any pi is transformed from zero to some posi-
tive probability.

Taken together these boundary conditions imply that expected inform-
ation gain is a general measure of the average degree of difference between
two sets of n probabilities. The index takes on a value of zero when the
two distributions are identical and becomes increasingly large and positive
as the differences become more pronounced.

(iii) Expected information gain as an index of spatial concentration 

In essence we have derived expected information gain as a measure of
the goodness-of-fit between a prior and a posterior distribution. The poorer

fit the larger is the value of the index. To convert expected
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information gain into an index of spatial concentration, we again work with
proportions distributed over n regions rather than probabilities. For such
applications it is usual to give the prior proportions values which corres-
pond to the most appropriate definition of maximal spatial dispersion over
the n regions and to define the posterior proportions as the observed pro-
portion of the variable located within each region. Given these definitions,
expected information gain will be zero when each posterior proportion is
equal to its corresponding prior proportion and is indicative of maximum
spatial dispersion. Expected information gain becomes increasingly large
and positive as the degree of spatial concentration exhibited by the post-
erior proportions increases. Unfortunately, there is no general formula
for the maximum value of expected information gain because this maximum is
specific to the problem in hand and depends both on the values given to the
prior proportions and the number of regions, n. All we can say about the
upper limit is that, as long as all prior proportions are greater than zero,
expected information gain will tend to some finite maximum value as one of
the posterior proportions tends to a value of one. Thus, under the stated
conditions, the maximum coincides with maximum spatial concentration when
the variable tends to be located in a single region.

The absence of a general maximum for expected information gain means
that the comparative value of the index is more restricted than relative
entropy. As a rule of thumb, it is only sensible to use expected inform-__

able when the posterior proportions are measured at different points in time.
Such comparisons are valid because the priors remain constant throughout
the analysis. A second point of difference between relative entropy and ex-
pected information gain is that the former measures increasing spatial dis-
persion whereas, the, latter measures increasing spatial concentration.

(iv) Voting in Liverpool (1974) 

To illustrate the use of expected information gain as a measure of spat-
ial concentration, we present an analysis of voting patterns in Liverpool
during the October 1974 General Election. The British electoral system, with
its series of winner takes all constituency elections, does not necessarily
guarantee that the number of Parliamentary seats won by each political party
is in accordance with their share of the total national vote. Indeed, in
the General Election of February, 1974 the Labour Party won the greatest
number of Parliamentary seats while the Conservative Party polled the great-
est number of votes. Such inequities are due to differences in the size of
constituency electorates and differences in the geographical distribution
of the votes for each party. In general a party whose support is fairly
evenly dispersed over all constituencies will tend to win relatively more
seats than a party whose vote is concentrated in a few constituencies. The
following analysis attempts to identify these inequalities.

The results of the eleven constituency (fig. 3a) elections in Liverpool
are listed in Table 7. The voting left Labour with nine Liverpool members
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(20)

(29)

(27)

For instance, if Liverpool votes according to national trends, the expected
proportion of Conservative voters in Crosby is obtained from (27) as

The reader may wish to check that for the Liverpool voting problem formula
(28) takes on a value of .020 (using logarithms to the base 10). This re-
sult measures the difference between expected national average voting pro-
portions for parties in Liverpool constituencies and the observed party
voting proportions in those constituencies. Because expected information
gain has no general maximum value this result is only of passing interest.
However, by decomposing this result into between and within category comp-
onents a more detailed interpretation may be given.

Table 7. Election results in Liverpool, February (1974)

Party Con Lab Lib No vote* Total
Electorate

Constituency

1. Crosby 29,764 17,589 10,429 20,801 78,583

2. Bootle 10,743 27,633 4,266 21,571 64,213

3. Scotland/
Exchange 2,234 15,154 944 16,804 35,136

4. Kirkdale 8,305 17,686 2,908 16,533 45,332

5. Walton 10,706 20,568 4,221 16,456 51,951

6.
N . .    D  e  r  b  y

11,445 23,964 4,215 19,243 58,867

7. Edge Hill 5,208 13,023 6,852 15,879 40,962

8. Toxteth 8,062 15,312 3,176 19,324 45,874

9. Wavertree 18,971 16,216 6,193 18,323 59,703

10. Garston 24,557 27,857 5,865 22,723 81,002

11. Huyton 15,517 31,750 4,956 21,237 73,460

Totals 145,412 226,752 54,025 208,894 635,083

* Category includes votes for small parties.

The reader may have noticed that the Liverpool voting problem is sim-
ilar in structure to the company sales problem described in Section II (iv).
Indeed, the only difference between the two problems is that in formula (28)

where k = n x m. The term on the left hand side of the addition sign is
the between category (party) information gain while the term on the right-
hand side is the average information gain for categories (parties) within
the n constituencies (regions). As usual formula (29) can be written more
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(30)

Table 8. Prior proportions ( pig) for the Liverpool voting problem.

economically in the notation

Calculations of the terms in formula (30) for the Liverpool voting data
produces the decomposition

+.020 = . 009 + .011,

which shows that the within party information gain is slightly more import-
ant than the between party effect.

To gain a more detailed understanding of these results it is necessary
to examine the individual terms which sum to make the two major components
of the decomposition. The between party information gain of I m(q:p ) =.009
is a measure of the difference between the proportion of votes cast for
political parties in all Liverpool constituencies and the proportion of
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Table 9. Posterior proportions (q„) in the Liverpool voting problem

votes cast for those parties in the U.K. as a whole. Inspection of formula
(291 will show that this between oartv effect is the sum of m(=4) terms of

These individual terms measure the extent to which the proportion voting
for the jth party in Liverpool was either above or below the national voting
proportion for that party. Thus, during the October, 1974 election, re-
latively more people voted Labour (+.035) in Liverpool than in the country
at large, while relatively fewer people voted Conservative (-.013) or

Liberal (-.017). The proportion who did not vote in Liverpool was close
to the national proportion not voting (+.004).
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the vote for the jth party. The terms in the summation over the n = 11 con-
stituencies each measure the information difference between the observed pro-

and is a measure of the extent to which the proportion of Conservative votes
in Crosby is greater than the national proportion of Conservative votes.
These terms may be positive or negative depending on whether the constit-
uency proportion is above or below the national proportion. Mapping these
terms for all constituencies gives an indication of regional variations in
the proportion of the vote for each party. The map of these terms for the
Conservative party (fig. 3b) shows a tendency for Conservative votes to be
over-represented in suburban constituencies at the expense of inner city
constituencies. The pattern is reversed for the Labour differences (fig.
3c) with over-representation in the inner city constituencies at the expense
of suburban constituencies, while the pattern of Liberal differences (fig.
3d) is more haphazard.

The average within party information gain for this problem may now be
represented in the form

The terms inside the square brackets are the sum of the individual const-
ituency differences for each party and measure the local concentration of
the vote for each party. Thus the concentration of the Conservative (.029)
and Liberal (.025) votes  is relatively high, while the concentration of
Labour (.0o5) and no voting (.002) is relatively low. These last results
help to explain the unrepresentative assignment of Parliamentary seats in
Liverpool. In the Election the Labour party won 9 seats and the Conservat-
ives 2 seats, whereas under a system of proportional representation Labour
would have won 6 seats, the Conservatives 4 seats and the Liberals 1 seat.
Such a malapportionment of seats occurs partly because the Conservatives
vote is concentrated in relatively few constituencies. Thus, although this
concentration allowed the Conservatives to win a couple of seats with large
majorities, the majority of seats were lost to the more evenly distributed
voting power of the Labour party.

The importance of the concentration of Conservative votes is further
reinforced when the measures of party voting concentrations are weighted

which make up the average information - gain within parties. Notice from the
calculation above that the weighted Conservative concentration of . 229 x

. 029 = .006 makes up over half the average concentration of all parties
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(v) Models of contingency table data 

So far our use of information statistics has been purely descriptive,
that is, we have used the various statistics to measure the departure of
observed proportions from some idealised distribution. However, when observ-
ed data is representable in the form of a contingency table, such as the
posterior proportions listed in Table 9, a more sophisticated form of analy-
sis may be employed. This method is generally termed categorical data analy-
sis and the usefulness to the geographer of this approach has recently been
expounded by Wrigley (1976, 1979), Upton and Fingleton (1979, 1980) and
Stapleton (1980). A recent text by Gokhale and Kullback (1978) develops
methods of categorical data analysis which make specific use of information
theory, and what follows is a brief outline of the logic of these methods.

In their book Gokhale & Kullback analyse a contingency table recording
the occurrence of leukemia mortality among survivors of A-bomb explosions
in Japan who were exposed to different levels of radiation. A simplified
notational format for this data is listed in Table 10, where qij denotes the
probability of the presence (i = 1) or absence (i = 2) of leukemia mortal-
ity among survivors exposed to different levels of radiation (j). The aim
of categorical analysis is to formulate a model to predict a corresponding

these parameters are estimated from the observed data in the contingency
table, however, space prevents a full discussion of the various estimation
procedures and the interested reader is referred to Upton and Fingleton
(1979) for an introduction to this topic.

The model described by equation (31) is termed a saturated log-linear
model because it contains a parameter to describe every element of data in
the contingency table. For this reason the model will give a perfect des-
cription of the data. The object of fitting this model is to obtain a yard-
stick for assessing the relative importance of all the possible parameters.
These saturated estimates enable the quick formulation of unsaturated models
which contain fewer than the maximum number of parameters. The aim of the
whole exercise is to find the unsaturated model with the least number of
parameters which adequately fits the data. For example, one unsaturated
model for the leukemia data is given by
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Table 10. Leukemia problem : data and parameter format

a) Observed probabilities

b) Predicted probabilities and log-linear parameters

This equation is termed the general independence model because the predict-

variety of different parameter combinations to be tested, and how these
combinations are chosen depends on both the number of variables in the cont-
ingency table and whether these variables are factors (causes) or responses.
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which measures the amount of information accounted for by the additional
parameters included in model b. The larger this difference, given the appro-
priate degrees of freedom, the greater is the explanatory power of the add-

specified models in sequence it is possible to use the statistic (37) to
work out the significance of each variable's parameters as an explanation of
the observed cell frequencies.

The application of log-linear models to geographical problems is a re-
cent phenomena. It seems likely that their usage will increase because they
provide a powerful method of evaluating alternative hypotheses about the fact-
or combinations which explain observed cell frequencies. In addition to
their technical elegance, log-linear models are representations of the most
ubiquitious form of geographical data, the contingency table. Thus there
is no shortage of problems which are suited to this style of analysis.

V APPLICATIONS AND DEVELOPMENTS 

So far we have sketched out some of the simpler geographical applicat-
ions of Shannon's entropy and the index of information gain. In this final
section we take a wider view of the subject and trace the progress of inform-
ation theory in geography during the recent past together with some of the
technical difficulties which have emerged.

A dominant field of research has been the application of information
statistics to measure various types of geographical concentration and

In our example the leukemia variable is a response to the radiation var-
iable because radiation can cause leukemia but not vice versa. More gener-
ally, the number of variables defines the maximum number of parameters that
may be included in the model while the factor/response relationships indic-
ate which of these parameters should be included. If an age category var-
iable, c, is added to the leukemia contingency table then the saturated
model takes the form

(33)

(36)

which measures the degree of fit between the two sets of frequencies. This
M.D.I. statistic is asymptotically distributed as chi-square with appropriate
degrees of freedom and may be used to test the null hypothesis of no sign-
ificant difference between the observed and predicted frequencies.

The significance tests for model parameters are made on differences in
the value of the M.D.I. statistic obtained by fitting models with different

where k is a subscript identifying the individual age categories. However,

because A is a response variable and 13 and c are factor variables the number
of parameters in the saturated models may be substantially reduced. It is
customary to include those joint parameters which measure interactions be-
tween factor variables, while joint parameters measuring interaction between
a response variable and one or more of the factor variables are excluded
from the model specification. For this reason an appropriate model for
analysing the leukemia table is

(34)

By fitting models similar to equation (34) to the three-way leukemia data
Gokhale and Kullback (1978) were able to test the statistical significance

Information statistics have a number of important roles to play in the
fitting and testing of log-linear models. Gokhale and Kullback (1978) have

(35)

ion which minimises the value of I(q:p) will always be some form of the log-
linear model. For this reason a natural strategy for estimating the para-
meter values in a log-linear model is to adopt a fitting procedure which
identifies the parameter estimates which minimise information gain.

Information statistics can also be used to construct significant tests
both for different model predictions and for their individual parameter
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dispersion. The early studies in this field often took their inspiration
from the Theil's (1967) book, ' Economics and Information Theory' and I and
A Horowitz's (1968, 1970) studies of competition and concentration in the
brewing industry. Early geographical adaptations of these methods included
Semple's (1973) study of the spatial concentration of corporate headquarters
and Garrison and Paulson's (1972, 1973) analyses of the effect of water
availability on the concentration of manufacturing activity in the Tennessee
Valley region. In a similar vein Chapman (1970, 1973) has used information
gain and its decompositions to measure changes in the regional population
distribution of the U.K. and U.S.A. during the past hundred years. As an
alternative to the analysis of regional proportions, both Berry and Schwind
(1969) and Chapman (1973, 1977) have proposed ways in which information stat-
istics can be applied to migration and spatial interaction matrices to pro-
vide measures of the relative location of the places where the flows begin
and end.

A number of geographers have used information statistics in conjunction
with more familiar techniques in an effort to understand certain spatial
problems. Marchand (1972) devised three versions of Shannon's redundancy,
termed internal, structural and global redundancy, which he used to measure
the relationship between natural vegetation types and cash crop production
in the Andes and the Llanos of Venezuela. In a second study Marchand (1975)
attempted a regionalization of Venezuela using variables measuring regional
levels of industrial and agricultural activity as a basis for the classi-
fication. Briefly, the method adopted was to use factor analysis to group
the variables and then to apply redundancy indices to assess the relative
importance of each group in each region. The redundancy values suggested
that an effective regionalization could have been achieved with a great re-
duction in the number of variables used in the original analysis. A more
ambitious study of agricultural systems was undertaken by Chapman (1974,
1977) who analysed the responses of Indian farmers to the effects of climatic
conditions on their rice yields. A game theoretic framework was adopted which
involved the construction of matrices which contain for instance, the pro-
bability of an unirrigated crop surviving a drought. Entropy statistics
were calculated from such data to provide measures of the farmer's uncert-
ainty about the occurrence of different rice yields in the face of different
climatic conditions and different management decisions.

Most of the studies described so far use data which are in the form of
sets of regional proportions . An important technical problem which influ-
ences the results of such analyses is the way in which the boundaries used
to define the regional data collection units condition the values of the
proportions used in the analysis. Clearly, different regional partitions
of the same study area will produce different sets of proportions which in
turn will produce different values of the observed entropy or information
gain. Geographers, such as Batty (1974, 1976), have often shown an aware-
ness of this potential source of error but relatively little has been done
to rectify the matter. However, in a recent paper, Batty and Sammons (1979)
propose a method of modifying Shannon's entropy in accordance with the part-
icular regional partition used in the analysis. They begin by arguing that
Shannon's entropy is appropriate in its usual form only when the study area
has been partitioned into equal sized regions. This condition ensures that
the values of the observed proportions are independent of the partition.
However, when the regions are of unequal size the proportions are to some
extent dependent on the partition and therefore it is necessary to use a
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A related field of geographical inquiry where information statistics
are beginning to make an impact is point pattern analysis. Broadly, this
technique involves placing a grid of cells over the map of some point dis-
tribution and then analysing properties of the set of observations formed by
counting the number of points in each cell. Medvedkov (1967, 1970) was the
first geographer to devise entropy statistics to measure the degree of organ-
isation present in point patterns and subsequently his methods have been used
to analyse settlement patterns by Semple and Golledge (1970). More recently,
Thomas and Reeve (1976) have demonstrated that Medvedkov's methods need to
be modified to account for variations in the average number of points per
cell between different patterns. Ecologists too use point pattern methods
to describe properties of plant distributions and, among others, Bowman et
al. (1971), Margalef (1958) and Pielou (1966, 1967 and 1977) have devised
information statistics which may be used to measure properties such as the
diversity of species in a plant population. A further aspect of point patt-
ern analysis is the study of maps coloured black or white according to
whether the variable is present or absent in each cell. Gatrell (1977) has
examined the relationship between Shannon's redundancy and some simple spat-
ial autocorrelation coefficients for a simulated set of such 'binary' maps.
He demonstrated a parabolic relationship between the two indices such that
high redundancy values were related to both high positive spatial autocorr-
elation (cells of the same colour tending to be near neighbours) and high
negative spatial autocorrelation (cells of different colours tending to be
near neighbours). This result leads him to suggest that redundancy is a use-
ful surrogate for spatial autocorrelation. However, here it is important
to realise that, whereas spatial autocorrelation coefficients measure the
spatial arrangement of a geographical variable, information statistics only
measure some property of the frequency distribution of a spatial variable.
In fact Clayton and Lamprecht (1974) have conducted an empirical study of
how various information statistics respond to changes in the arrangement
of a pattern.

For the most part we have been concerned with applications of inform-
ation statistics as index numbers for measuring properties of patterns and
distributions. However, in the section on log-linear modelling we touched
upon the use of these statistics in the construction of data models and it
is in the field of mathematical modelling that we find the other major
geographical application of information theory. Most of these applications
are in the field of urban and regional modelling and originate with the work
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of Wilson (1967, 1970). He demonstrated that entropy - maximising principles
could usefully be built into existing urban planning models which predicted
variables such as the pattern of journey-to-work trips in a city or the
number of households in urban regions. For example, his journey-to-work
model predicts the number of work-trips between urban regions which both
maximises observer's uncertainty (entropy) about which individuals made which
trip, and satisfies given information about the numbers of jobs and workers
in each region and the cost of travelling between regions. This entropy
maximising solution with maximum uncertainty may be interpreted in another
way. In a statistical sense it is said to be the most likely solution be-
cause it gives the individuals the maximum possible freedom to choose be-
tween work-trip routes given the information about costs, jobs and workers'
residences. The entropy maximising principle was a significant improvement
on earlier work because it improved both the theoretical elegance of these
models and their capacity to fit observed distribution.

The derivation of predictive equations for such planning models requires
knowledge of the complex mathematical topic of constrained maximisation which
is outside the scope of this monograph. However, in a recent mathematical
treatment of information theory in geography Webber (1979) has shown that
the mathematical principles needed to derive the entropy-maximising urban
models are simple logical extensions of those principles we used to derive
the index numbers. Indeed, for the more mathematically inclined reader a
number of texts have been listed in the bibliography which treat the analy-
tical aspects of information theory in more detail than has been attempted
here.
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